When we want to prove that certain relationships exist among angles, the following two postulates could be useful:

Postulate 2.11 Angle Addition Postulate D is in the interior of $\angle ABC$ if and only if $m\angle ABD + m\angle DBC = m\angle ABC$.

Example 1:

Find $m \angle 1$ if $m \angle 2 = 56$ and $m \angle JKL = 145$.

$$m \le 1 + m \le 2 = m \le JKL$$
 $m \le 1 + 56 = 145$
 $\sqrt{-56/-56}$
 $m \le 1 = 89$

Example 2:

informal proof

If $m\angle 1 = 23$ and $m\angle ABC = 131$, find $m\angle 3$. Justify each step.

MLABC= mLI+mL2+mL3 Angle Anddition
Post.

131 = 23 + 90 + mL3 Substitution

131=113+mL3 -113 -113

 $18 = m \angle 3$

substitution

subtraction property

substitution

Example 3:

 $\angle 6$ and $\angle 7$ form a linear pair. If $m\angle 6 = 3x + 32$ and $m\angle 7 = 5x + 12$, find x, $m\angle 6$, and $\underline{m}\angle 7$.

$$3x+32+5x+12=180$$

$$8x+44=180$$

$$-44/-44$$

$$8x = 136$$

$$8$$

$$8 = 136$$

m46+m47=180

$$=3(11)+32$$
 $51+32$
 $M \le 6 = 83$
 $M \le 7 = 5x + 12$
 $= 5(17)+12$
 $= 85+12$
 $M \le 7 = 97$

Algebraic properties can be applied to prove theorems for congruence relationships involving complementary and supplementary angles:

Example 4:

Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary.

Prove: $\angle 1 \cong \angle 3$

STATEMENTS		REASONS	
1.	∠1 and ∠2 are supplementary	1. Given	
	∠2 and ∠3 are supplementary		
2.	$m\angle 1 + m\angle 2 = 180$	2 Def. of supplementary angles	
	$m\angle 2 + m\angle 3 = 180$	3 3	
3.	m/1+m/2=m/2+m/3 -m/2-m/2	3. Substitution	
4.	$m\angle 2 = m\angle 2$	4 Reflexive Prop. of =	
5 .	<i>m</i> ∠1 = <i>m</i> ∠3	5. Subtraction Prop.	
6.	∠1 ≅ ∠3	Def. of congruence	
		· · · · · · · · · · · · · · · · · · ·	

Example 5:

In the figure, $\angle ABE$ and $\angle DBC$ are right angles. Prove that $\angle ABD \cong \angle EBC$.

Given

	STATEMENTS		REASONS	
-	1.	∠ABE and ∠DBC are right angles	1. Given	
	2.	<i>m∠ABE</i> = 90 <i>m∠DBC</i> = 90	2 Def. of right angle	
	3.	$m\angle ABD$ and $m\angle DBE$ are complementary, $m\angle DBE$ and $m\angle EBC$ are complementary	3. Complement Thm.	
	4.	∠ABD ≅ ∠EBC	4 Congruent Complements	
			' ' hm.	

Theorem 2.8 Vertical Angles Theorem

BOW-TIES

If two angles are vertical angles, then they are congruent.

Abbreviation Vert. \triangle are \cong .

Example $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Vertical angles are formed by intersecting lines (think of an X).

Example 6:

Prove that if \overrightarrow{DB} bisects $\angle ADC$, then $\angle 2 \cong \angle 3$.

Given: DB bisects ∠ADC. (angle bisector)

Prove: $\angle 2 \cong \angle 3$

REASONS

 \overrightarrow{DB} bisects $\angle ADC$.

2. ∠1 ≅ ∠2

STATEMENTS

3. ∠1 and ∠3 are vertical angles

4.

Given

Def. of Angle Bisector

Def. of Vertical Angles

Vertical Angles Thm.

Transitive Prop (or Substitution)

Symmetric Prop.

Example 7:

Given

Given

If $\angle 3$ and $\angle 4$ are vertical angles, $\underline{m} \angle 3 = 6x + 2$, and $\underline{m} \angle 4 = 8x - 14$, find $\underline{m} \angle 3$ and $\underline{m} \angle 4$. Justify each step.

- O 23 ≈ 24
- 1 Vertical Angles Thm.
- @ m L 3 = m L 4
- 2 Def. of congruence
- 3 6x+2=8x-14 4 -6x 1-6x
- 3 Substitution
- 4 Subtraction Prop.
- 5 2=2x-14
- 5 Substitution
- 6 +141 +14
- 6 Addition Prop.
- 8 16 2x
- 1 Substitution
- 9 8=X
- ® Division Prop.(9) Substitution
- @ mL3 = 6(8)+2 = 48+2 = 50
- 10 Substitution

m L4 = 8(8) - 14 = 64 - 14 = 50

Theorems Right Angle Theorems				
	Theorem	Example		
2.9	Perpendicular lines intersect to form four right angles. Example If $\overrightarrow{AC} \perp \overrightarrow{DB}$, then $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are rt. $\underline{\&}$.	A T		
2.10	All right angles are congruent. Example If $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are rt. \triangle , then $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$.	D 1 2 B		
2.11	Perpendicular lines form congruent adjacent angles. Example If $\overrightarrow{AC} \perp \overrightarrow{DB}$, then $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 4$, $\angle 3 \cong \angle 4$, and $\angle 1 \cong \angle 3$.	*		
2.12	If two angles are congruent and supplementary, then each angle is a right angle. Example If $\angle 5\cong \angle 6$ and $\angle 5$ is suppl. to $\angle 6$, then $\angle 5$ and $\angle 6$ are rt. $\underline{4}$.	5) 6		
2.13	If two congruent angles form a linear pair, then they are right angles. Example If ∠7 and ∠8 form a linear pair, then ∠7 and ∠8 are rt. ∠.	7 8		

Example 8:

Find the measure of each numbered angle, and name the theorems that justify your work.

